FlowCam - Flow Imaging Microscopy Blog

Fooled copepods ingest dimethyl sulfide-infused microplastics

December 2018 — Can microplastics be mistaken for algae? A recent study by the University of Plymouth and the Plymouth Marine Laboratory demonstrated that nylon microfibers can acquire dimethyl sulfide (DMS), a compound produced by algae, when environmentally exposed to the compound. The study also showed that Calanus helgolandicus, a chemosensing copepod that uses DMS to locate algae, their normal food source, more readily ingested microplastic fibers infused with DMS (Fig. 1).  The FlowCam was used to enumerate the microplastic fibers and evaluate microplastic fiber uptake during the experiment. 

Read More

Topics: Marine Research, User Spotlight, Aquatic Research

FlowCam for the Continuous Improvement of Manufacturing Process: A Case Study

A client in the biopharmaceutical market recently learned how the FlowCam is perfectly suited to visualize translucent plastic particles that may enter into their production process. They were frustrated with traditional microscopy that was not effective at visualizing microparticles. They turned to the FlowCam to troubleshoot their manufacturing process and were able to compare old and new data sets allowing for continuous improvement.

Read More

Topics: Industrial Applications, User Spotlight, Biopharmaceutical Research

New High-Throughput Method for Elastin-like Polymer (ELP) Coacervate Analysis

December 2018 — A recent study by researchers from the University of New England and University of New Hampshire has demonstrated that flow imaging microscopy is an accurate, more efficient, and more informative method of elastin-like polymer (ELP) coacervate analysis than standard methods. ELP coacervates are a class of molecules with promising applications in drug delivery vehicles, tissue engineering, environmental remediation, and more. ELP coacervate architecture is stimuli-responsive and highly tunable, making them ideal for the above-mentioned applications.  


Read More

Topics: Industrial Applications, User Spotlight, Biopharmaceutical Research, Nanoparticles

Are Blue Mussels the New Microplastic Fiber Sink? A study by Bigelow Lab

December 2018 — Microplastics are an ubiquitous concern for the world's oceans. Increasing demand for consumer plastics has resulted in an estimated 4.8 to 15.11 million metric tons of plastics entering the oceans every year1,2. These macroplastics degrade into microplastics, or plastic fragments <5 mm in diameter, which can range in morphology from rigid pieces to amorphous fibers. 

Read More

Topics: Marine Research, User Spotlight, Aquatic Research

New Method for Meiobenthos Analysis Using FlowCam

Researchers from the Japan Agency for Marine-Earth Science and Technology, and Am-Lab Inc. developed a methodology to use the FlowCam® for analysis of sediment-inhabiting meiobenthos.  

Meiobenthos are small, benthic invertebrates often used as indicators of anthropogenic influence and other natural disturbances. They play a primary role in sediment nutrient cycling and stability in benthic ecosystems. 

Meiobenthos imaged by the FlowCam. Organic matter was stained with Rose Bengal to easily differentiate meiobenthos from inorganic particulates, such as sediment. Imaged organisms are labeled as follows: a) Nematoda; b) Copepoda; c) Nauplius larvae; d) Kinorhyncha; e) Foraminifera. Credit: Kitahashi et al. (2018). 

Optical microscopy, which is labor-intensive and time-consuming, is often the primary technology utilized for analysis of meiobenthos. In this study, Kitahashi et al. developed a method to use the FlowCam and VisualSpreadsheet® for analysis of these small, benthic invertebrates.

Read More

Topics: Marine Research, Freshwater Research, User Spotlight, Aquatic Research

New Method for Cell Counting Microcystis Colonies Using Image Processing Method

October 2018 — Environmental Engineering Research published a paper presenting a new method for cell counting Microcystis colonies using the FlowCam.  Researchers from Korea Water Resources Corporation, University of Central Florida, and Kyungbook National University developed a three-dimensional image processing method using an algorithm to count colonial Microcystis cells.    

Read More

Topics: Freshwater Research, Harmful Algal Blooms, FlowCam Technology, User Spotlight, Aquatic Research

Study by University of Alberta finds the FlowCam is a reliable and faster alternative to manual microscopy for cyanobacterial bloom monitoring

Scientists at the University of Alberta, Alberta Health, and University of Calgary compared the efficacy of using the FlowCam to traditional light microscopy for rapid cyanobacteria quantification and high resolution taxonomic data. Traditional light microscopy, while it provides the highest level of detail and is the ideal method for taxonomic identification, is time-consuming. The rate of quantifying and reporting cyanobacterial abundance must match the rate of cyanobacterial production in order to assess the present risk to human and ecological health. 

Anabaena, a common culprit of cyanobacterial blooms, as imaged by the FlowCam at 10X. 

Read More

Topics: Freshwater Research, Harmful Algal Blooms, Municipal Water (Drinking/Wastewater), User Spotlight, Aquatic Research

Technological Advances Push Protein and Particulate Research Further: Insights from the 2018 Workshop on Protein Aggregation and Immunogenicity

KentPetersonCEOFluidImagingTechnologiesKent Peterson is the CEO of Fluid Imaging Technologies.

Every summer, around 160 researchers converge at the Workshop on Protein Aggregation and Immunogenicity hosted in Breckenridge, Colorado by the University of Colorado Center for Pharmaceutical Technology and the AAPS Focus Group on Protein Aggregation and Immunogenicity. 

At the Workshop, scientists studying the behavior, formation, and effects of protein aggregates and other subvisible particles in therapeutic formulations gather to present their research and discuss industry issues.

Read More

Topics: Protein Therapeutics, News and Events, FlowCam Technology, User Spotlight, Biopharmaceutical Research

Japanese Consortium Assesses the Standardization of Flow Imaging Microscopy for Therapeutic Protein Regulations

In a recent study by Kiyoshi et al., a Japanese consortium conducted a collaborative study to assess the standardization of flow imaging microscopy (FIM) for the analysis of subvisible particles (SVPs) and protein aggregates in therapeutic protein products.

Read More

Topics: Protein Therapeutics, User Spotlight, Biopharmaceutical Research

Summer 2018 Intern Pursues Interests in Instrumentation and Business at Fluid Imaging Technologies

The summer internship is a valued program at Fluid Imaging Technologies (FIT). For the past 5 years, we've hosted a student in our headquarters to grow and pursue their interest in science, technology, and business.

This year, Travis Haysley, a joint MBA and PhD student at University of Maine's Graduate School for Biomedical Science and Engineering, approached us about an internship opportunity. Haysley was interested in FIT for our unique ability to offer a glimpse into the world of industry while providing an avenue to pursue his interest in instrumentation. 

Travis Haysley (middle) with Laboratory Supervisor Nicole Gill (left) and Technical Customer Support Manager Kay Johnson (right). Not pictured is Heather Anne Wright, Applications Support Manager, who was also an adviser to Haysley. 
Read More

Topics: News and Events, User Spotlight