FlowCam Demonstrates Degradation of Protein Formulations After Transport in IV Bags via Hospital Pneumatic Tube System

FlowCam Demonstrates Degradation of Protein Formulations After Transport in IV Bags via Hospital Pneumatic Tube System

Subvisible particles in biotherapeutics represent critical quality attributes because they pose regulatory and potential product safety risks. Therefore, much of the development work behind these therapeutics focuses on creating formulations and manufacturing processes that minimize the particle content in the drug product and reduce the potential for adverse immunogenicity. 

Photos of IV bags containing Dextrose and Saline before and after transport via hospital pneumatic tube system

Pictured above are images of IV bags before and after transport via Pneumatic Tube System with Dextrose and Saline.

Despite measures taken during formulation and manufacturing, product quality can still be compromised after manufacturing due to accidental stresses caused by freeze-thawing, exposure to light, and mechanical shock from dropping the drug container. In a recent collaboration between the University of Colorado and Children's Hospital Colorado, researchers investigated particle generation in IV bags containing therapeutic protein formulations in the hospital's pneumatic tube system (PTS). Particle monitoring technologies like FlowCam are critical to ensure biotherapeutics have acceptable particle content not just after manufacturing but up until the therapy is administered to patients.

While many hospitals forbid the transport of therapeutic protein formulations via pneumatic tube systems, it remains a problem in some settings. In this study, Flow Imaging Microscopy (FIM) via FlowCam and Light Obscuration (LO) via HIAC were used to characterize the particle content of IV bags before and after transport via PTS. The findings indicated that IV bags contained significantly higher particle concentrations after being sent via PTS with the exact increase varying by IV bag materials (polyvinyl chloride or polyolefin), the protein formulation (IVIG or mAb), and the buffer solution (Dextrose or saline).

FlowCam images of particles formed in PVC IV bag filled with saline and no protein

FlowCam images of particles formed in PVC IV bag filled with mAb

FlowCam images of particles formed in PVC IV bag filled with IVIG 

FlowCam images of particles formed in PVC IV bags filled with saline and no protein (top), mAb (middle), or IVIG (bottom) following PTS transport. The circular particles in the top two rows are likely plasticizer droplets. The amorphous particles in the bottom two rows are likely protein aggregates.

FlowCam images following PTS transport suggest that these new particles consist not only of protein aggregates but also plasticizer droplets which have been known to promote further protein aggregation. Light obscuration measurements performed on these samples were consistent with the lower sensitivity of this modality to biotherapeutic-relevant particles and did not detect increased particle concentration following transport.

Read the full publication here: Effects of Transportation of IV Bags Containing Protein Formulations Via Hospital Pneumatic Tube System: Particle Characterization by Multiple Methods: Linkuviene, Ross, Crawford, Journal of Pharmaceutical Sciences January 2022.

This study demonstrates that sending therapeutic protein formulations via PTS can result in significant particle generation, greatly reducing the quality of the therapeutic that a patient ultimately receives. The authors strongly advise against using PTS to move these therapies in hospitals. Characterizing these downstream particle sources with FlowCam can help researchers develop more effective guidance for handling these therapies, minimize particle formation after a sample is manufactured, and ensure that patient receives the highest quality therapeutic possible.

Explore FlowCam Biopharma Applications

Post Topics

Related Posts

Nurse with IV bag and patient in the background
Monitoring Subvisible Particle Formation in Infusion Bags Exposed to Stress Conditions
Agitation during transportation is one of the most ubiquitous stress conditions to which therapeutic protein formulations and other biotherapeutic …
Read Post
FlowCam images of IVIG proteins before and after drop shock
Study Uses FlowCam to Investigate Effects of Diluent and Silicone Oil on Particulate Formation in IV Bags
Protein aggregation is a major concern for biopharmaceuticals in post-production. Subvisible particles that form due to routine handling compromise …
Read Post
Need Supplies?

Find supplies and spare parts for your FlowCam instrument or ask for a quote. 

Order Now

Need Help?

Get technical support and application help. Request training or preventative maintenance.


Submit a Support Ticket

Need Information?

Check out our knowledge base including white papers, application notes, technical notes, and videos.

View Resources